Sep 15, 2024  
2013 - 2014 Graduate Catalog 
    
2013 - 2014 Graduate Catalog [ARCHIVED CATALOG]

Department of Physical Sciences


» SMS Home 
» Policies  » Departments 
» Course Descriptions  »Faculty 

www.vims.edu/research/departments/physical

The objectives of the Department of Physical Sciences are to generate, communicate and apply knowledge concerning the physical, chemical and geological processes that operate in the coastal ocean and estuaries. The physical oceanography group studies and models the properties and movement of water and dissolved and  suspended material in estuarine, coastal and continental shelf environments. Geological oceanography includes the study of the processes of sediment erosion, transport and accumulation as well as the resulting stratigraphy. Marine chemistry emphasizes the study of marine biogeochemical processes, and environmental  fate and transport of natural and anthropogenic substances. Interdisciplinary studies are strongly emphasized in the Department of Physical Sciences.

Preparatory Studies

In all aspects of the Department of Physical Sciences’ education and research programs, there is a heavy reliance on quantitative skills. Our incoming students are expected to have a strong background in one or more areas of physical sciences and mathematics. Undergraduate majors providing preparation for graduate study in Physical Sciences include physics, applied mathematics, engineering, chemistry and geology. Biological Sciences majors interested in pursuing graduate work in Physical Sciences are encouraged to include introductory physics and calculus through ordinary differential equations in their backgrounds.

Typical Course of Study

Students in the Department of Physical Sciences specialize in Chemical, Geological or Physical Oceanography by following one of the tracks described below. In addition to the core courses required of all SMS students and a required departmental course in the area of specialization, each student is required to enroll in MSCI 515D - Physical Sciences Seminar  each fall and spring semester.

Graduate students in chemical oceanography/marine geochemistry may specialize in any of the various aspects of marine and environmental chemistry. Students are required to take MSCI 524 - Principles of Chemical Oceanography ; MSCI 630 - Advanced Aquatic Chemistry  is recommended. Specialized course work in other aspects of marine and environmental chemistry can be selected through recommendation of the student’s advisory committee.

Students interested in geological oceanography may pursue tracks emphasizing sedimentary environments and stratigraphy, sediment geochemistry, or physical transport/morphodynamic processes. Courses include marine sedimentation, coastal morphodynamics, sediment transport, multivariate and time-series analysis, and isotope geochronology. Geological Oceanography students are required to take MSCI 522 - Principles of Geological Oceanography . In addition, depending on a student’s particular emphasis, geological students may be required to take advanced courses in physical, chemical or biological oceanography.

Students majoring in physical oceanography are required to take MSCI 520 - Principles of Coastal and Ocean Dynamics . Additional advanced courses address estuarine hydrodynamics and water quality, provide an in-depth focus on estuarine physics and its influence on biogeochemical processes, boundary layer processes, various topics in coastal ocean dynamics, and the application of three-dimensional numerical modeling to estuarine and coastal issues.

Areas of Research

Chemical Oceanography/Marine Geochemistry

This program includes a diverse faculty with numerous cross-disciplinary interests. Work is conducted across riverine, estuarine, continental margin and open ocean environments on a variety of projects intended to help better understand the cycling of organic and inorganic species from both natural and anthropogenic sources. Individual faculty and students in this program collaborate actively not only with other programs in Physical Sciences, but also with the departments of Biological and Fisheries Science. Examples of current and on-going projects within the Chemical Oceanography/Geochemistry group include: cycling and diagenesis of dissolved and particulate organic matter in estuaries and open ocean settings; carbon and nitrogen transport and cycling in rivers, estuaries, and the coastal ocean, environmental exchanges and transport of contaminants and use of natural and anthropogenic substances as tracers of ecological processes; and the chemical composition and biological availability of dissolved organic nitrogen in diverse systems from the open ocean to wastewater treatment plants.

Geological Oceanography

Encompasses local and international research on a variety of disciplinary and interdisciplinary topics. Research sites span the full range of marine/nearshore environments from coastal plain and river floodplains, through estuaries and across the margin to the base of the continental rise. Although much of our effort addresses questions in Chesapeake Bay and surrounding areas, federal funding supports research in many other areas in the U.S. and around the world (including New Zealand, China, and Taiwan) that generates knowledge about geological phenomena in the coastal ocean. Some of the major focal areas include: sediment transport and boundary layer processes; sediment flux and fate; seabed dynamics; shoreline erosion/sand resource issues; and Quaternary stratigraphic development. Interdisciplinary research efforts involve faculty from the departments of Biological Sciences and Environmental and Aquatic Animal Health, as well as colleagues from other institutions worldwide.

Physical Oceanography

Focuses on water motion in estuaries and on the continental shelf along with the associated transport of buoyancy, suspended particles, nutrients and pollutants. Physical Oceanography at VIMS is extremely interdisciplinary, with faculty who straddle fluid physics, material transport and water quality, and who have ongoing collaborations with chemists and geologists within our department, biologists and resource managers elsewhere at VIMS, and with scientists from various disciplines throughout the country and around the world. We have recent and/or ongoing field projects in the Chesapeake Bay and its tributaries as well as on the shelves of the east and west coasts of the U.S., and we are applying three-dimensional numerical models to study circulation and associated dissolved and particulate transport in estuarine and shelf environments. Cooperative research projects are underway with scientists from countries including Korea, The Netherlands, Taiwan, and the U.K. Some of the major focal areas of scientists in our group include: wind- and buoyancy driven circulation on the inner shelf; bottom boundary layer processes; the dynamics of estuarine fronts; three-dimensional modeling of estuarine sediment transport and water quality; the association of characteristic density- and tidally-driven estuarine circulation patterns with the fate and transport of pollutants; wind wave evolution in estuaries and on shelves; and the physics governing sediment transport on shelves, in estuaries, and in the surf zone.